3.2.10 \(\int \frac {x^6 (4+x^2+3 x^4+5 x^6)}{(3+2 x^2+x^4)^2} \, dx\) [110]

3.2.10.1 Optimal result
3.2.10.2 Mathematica [C] (verified)
3.2.10.3 Rubi [A] (verified)
3.2.10.4 Maple [C] (verified)
3.2.10.5 Fricas [C] (verification not implemented)
3.2.10.6 Sympy [B] (verification not implemented)
3.2.10.7 Maxima [F]
3.2.10.8 Giac [B] (verification not implemented)
3.2.10.9 Mupad [B] (verification not implemented)

3.2.10.1 Optimal result

Integrand size = 31, antiderivative size = 237 \[ \int \frac {x^6 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=19 x-\frac {17 x^3}{3}+x^5+\frac {25 x \left (3-x^2\right )}{8 \left (3+2 x^2+x^4\right )}+\frac {3}{16} \sqrt {\frac {3}{2} \left (-8669+5011 \sqrt {3}\right )} \arctan \left (\frac {\sqrt {2 \left (-1+\sqrt {3}\right )}-2 x}{\sqrt {2 \left (1+\sqrt {3}\right )}}\right )-\frac {3}{16} \sqrt {\frac {3}{2} \left (-8669+5011 \sqrt {3}\right )} \arctan \left (\frac {\sqrt {2 \left (-1+\sqrt {3}\right )}+2 x}{\sqrt {2 \left (1+\sqrt {3}\right )}}\right )+\frac {3}{32} \sqrt {\frac {3}{2} \left (8669+5011 \sqrt {3}\right )} \log \left (\sqrt {3}-\sqrt {2 \left (-1+\sqrt {3}\right )} x+x^2\right )-\frac {3}{32} \sqrt {\frac {3}{2} \left (8669+5011 \sqrt {3}\right )} \log \left (\sqrt {3}+\sqrt {2 \left (-1+\sqrt {3}\right )} x+x^2\right ) \]

output
19*x-17/3*x^3+x^5+25/8*x*(-x^2+3)/(x^4+2*x^2+3)+3/32*arctan((-2*x+(-2+2*3^ 
(1/2))^(1/2))/(2+2*3^(1/2))^(1/2))*(-52014+30066*3^(1/2))^(1/2)-3/32*arcta 
n((2*x+(-2+2*3^(1/2))^(1/2))/(2+2*3^(1/2))^(1/2))*(-52014+30066*3^(1/2))^( 
1/2)+3/64*ln(x^2+3^(1/2)-x*(-2+2*3^(1/2))^(1/2))*(52014+30066*3^(1/2))^(1/ 
2)-3/64*ln(x^2+3^(1/2)+x*(-2+2*3^(1/2))^(1/2))*(52014+30066*3^(1/2))^(1/2)
 
3.2.10.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.56 \[ \int \frac {x^6 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=19 x-\frac {17 x^3}{3}+x^5-\frac {25 x \left (-3+x^2\right )}{8 \left (3+2 x^2+x^4\right )}+\frac {9 \left (90 i+31 \sqrt {2}\right ) \arctan \left (\frac {x}{\sqrt {1-i \sqrt {2}}}\right )}{16 \sqrt {2-2 i \sqrt {2}}}+\frac {9 \left (-90 i+31 \sqrt {2}\right ) \arctan \left (\frac {x}{\sqrt {1+i \sqrt {2}}}\right )}{16 \sqrt {2+2 i \sqrt {2}}} \]

input
Integrate[(x^6*(4 + x^2 + 3*x^4 + 5*x^6))/(3 + 2*x^2 + x^4)^2,x]
 
output
19*x - (17*x^3)/3 + x^5 - (25*x*(-3 + x^2))/(8*(3 + 2*x^2 + x^4)) + (9*(90 
*I + 31*Sqrt[2])*ArcTan[x/Sqrt[1 - I*Sqrt[2]]])/(16*Sqrt[2 - (2*I)*Sqrt[2] 
]) + (9*(-90*I + 31*Sqrt[2])*ArcTan[x/Sqrt[1 + I*Sqrt[2]]])/(16*Sqrt[2 + ( 
2*I)*Sqrt[2]])
 
3.2.10.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.03, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {2197, 27, 2205, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6 \left (5 x^6+3 x^4+x^2+4\right )}{\left (x^4+2 x^2+3\right )^2} \, dx\)

\(\Big \downarrow \) 2197

\(\displaystyle \frac {1}{48} \int -\frac {6 \left (-40 x^8+56 x^6-175 x^2+75\right )}{x^4+2 x^2+3}dx+\frac {25 x \left (3-x^2\right )}{8 \left (x^4+2 x^2+3\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {25 x \left (3-x^2\right )}{8 \left (x^4+2 x^2+3\right )}-\frac {1}{8} \int \frac {-40 x^8+56 x^6-175 x^2+75}{x^4+2 x^2+3}dx\)

\(\Big \downarrow \) 2205

\(\displaystyle \frac {25 x \left (3-x^2\right )}{8 \left (x^4+2 x^2+3\right )}-\frac {1}{8} \int \left (-40 x^4+136 x^2+\frac {9 \left (59-31 x^2\right )}{x^4+2 x^2+3}-152\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{8} \left (\frac {3}{2} \sqrt {\frac {3}{2} \left (5011 \sqrt {3}-8669\right )} \arctan \left (\frac {\sqrt {2 \left (\sqrt {3}-1\right )}-2 x}{\sqrt {2 \left (1+\sqrt {3}\right )}}\right )-\frac {3}{2} \sqrt {\frac {3}{2} \left (5011 \sqrt {3}-8669\right )} \arctan \left (\frac {2 x+\sqrt {2 \left (\sqrt {3}-1\right )}}{\sqrt {2 \left (1+\sqrt {3}\right )}}\right )+8 x^5-\frac {136 x^3}{3}+\frac {3}{4} \sqrt {\frac {3}{2} \left (8669+5011 \sqrt {3}\right )} \log \left (x^2-\sqrt {2 \left (\sqrt {3}-1\right )} x+\sqrt {3}\right )-\frac {3}{4} \sqrt {\frac {3}{2} \left (8669+5011 \sqrt {3}\right )} \log \left (x^2+\sqrt {2 \left (\sqrt {3}-1\right )} x+\sqrt {3}\right )+152 x\right )+\frac {25 x \left (3-x^2\right )}{8 \left (x^4+2 x^2+3\right )}\)

input
Int[(x^6*(4 + x^2 + 3*x^4 + 5*x^6))/(3 + 2*x^2 + x^4)^2,x]
 
output
(25*x*(3 - x^2))/(8*(3 + 2*x^2 + x^4)) + (152*x - (136*x^3)/3 + 8*x^5 + (3 
*Sqrt[(3*(-8669 + 5011*Sqrt[3]))/2]*ArcTan[(Sqrt[2*(-1 + Sqrt[3])] - 2*x)/ 
Sqrt[2*(1 + Sqrt[3])]])/2 - (3*Sqrt[(3*(-8669 + 5011*Sqrt[3]))/2]*ArcTan[( 
Sqrt[2*(-1 + Sqrt[3])] + 2*x)/Sqrt[2*(1 + Sqrt[3])]])/2 + (3*Sqrt[(3*(8669 
 + 5011*Sqrt[3]))/2]*Log[Sqrt[3] - Sqrt[2*(-1 + Sqrt[3])]*x + x^2])/4 - (3 
*Sqrt[(3*(8669 + 5011*Sqrt[3]))/2]*Log[Sqrt[3] + Sqrt[2*(-1 + Sqrt[3])]*x 
+ x^2])/4)/8
 

3.2.10.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2197
Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> 
 With[{Qx = PolynomialQuotient[x^m*Pq, a + b*x^2 + c*x^4, x], d = Coeff[Pol 
ynomialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Polynomial 
Remainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4) 
^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b^2 
 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c*x 
^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*Qx + b^2*d*(2*p + 3) - 2* 
a*c*d*(4*p + 5) - a*b*e + c*(4*p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; Fre 
eQ[{a, b, c}, x] && PolyQ[Pq, x^2] && GtQ[Expon[Pq, x^2], 1] && NeQ[b^2 - 4 
*a*c, 0] && LtQ[p, -1] && IGtQ[m/2, 0]
 

rule 2205
Int[(Px_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandInte 
grand[Px/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x^ 
2] && Expon[Px, x^2] > 1
 
3.2.10.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.09 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.30

method result size
risch \(x^{5}-\frac {17 x^{3}}{3}+19 x +\frac {-\frac {25}{8} x^{3}+\frac {75}{8} x}{x^{4}+2 x^{2}+3}+\frac {9 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+2 \textit {\_Z}^{2}+3\right )}{\sum }\frac {\left (31 \textit {\_R}^{2}-59\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}+\textit {\_R}}\right )}{32}\) \(72\)
default \(x^{5}-\frac {17 x^{3}}{3}+19 x +\frac {-\frac {25}{8} x^{3}+\frac {75}{8} x}{x^{4}+2 x^{2}+3}+\frac {3 \left (76 \sqrt {-2+2 \sqrt {3}}\, \sqrt {3}+135 \sqrt {-2+2 \sqrt {3}}\right ) \ln \left (x^{2}+\sqrt {3}-x \sqrt {-2+2 \sqrt {3}}\right )}{64}+\frac {3 \left (-118 \sqrt {3}+\frac {\left (76 \sqrt {-2+2 \sqrt {3}}\, \sqrt {3}+135 \sqrt {-2+2 \sqrt {3}}\right ) \sqrt {-2+2 \sqrt {3}}}{2}\right ) \arctan \left (\frac {2 x -\sqrt {-2+2 \sqrt {3}}}{\sqrt {2+2 \sqrt {3}}}\right )}{16 \sqrt {2+2 \sqrt {3}}}+\frac {3 \left (-76 \sqrt {-2+2 \sqrt {3}}\, \sqrt {3}-135 \sqrt {-2+2 \sqrt {3}}\right ) \ln \left (x^{2}+\sqrt {3}+x \sqrt {-2+2 \sqrt {3}}\right )}{64}+\frac {3 \left (-118 \sqrt {3}-\frac {\left (-76 \sqrt {-2+2 \sqrt {3}}\, \sqrt {3}-135 \sqrt {-2+2 \sqrt {3}}\right ) \sqrt {-2+2 \sqrt {3}}}{2}\right ) \arctan \left (\frac {2 x +\sqrt {-2+2 \sqrt {3}}}{\sqrt {2+2 \sqrt {3}}}\right )}{16 \sqrt {2+2 \sqrt {3}}}\) \(288\)

input
int(x^6*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x,method=_RETURNVERBOSE)
 
output
x^5-17/3*x^3+19*x+(-25/8*x^3+75/8*x)/(x^4+2*x^2+3)+9/32*sum((31*_R^2-59)/( 
_R^3+_R)*ln(x-_R),_R=RootOf(_Z^4+2*_Z^2+3))
 
3.2.10.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.25 (sec) , antiderivative size = 210, normalized size of antiderivative = 0.89 \[ \int \frac {x^6 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=\frac {96 \, x^{9} - 352 \, x^{7} + 1024 \, x^{5} + 1716 \, x^{3} - 3 \, {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {8073 i \, \sqrt {2} + 234063} \log \left (\sqrt {8073 i \, \sqrt {2} + 234063} {\left (76 i \, \sqrt {2} + 59\right )} + 45099 \, x\right ) + 3 \, {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {8073 i \, \sqrt {2} + 234063} \log \left (\sqrt {8073 i \, \sqrt {2} + 234063} {\left (-76 i \, \sqrt {2} - 59\right )} + 45099 \, x\right ) + 3 \, {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {-8073 i \, \sqrt {2} + 234063} \log \left ({\left (76 i \, \sqrt {2} - 59\right )} \sqrt {-8073 i \, \sqrt {2} + 234063} + 45099 \, x\right ) - 3 \, {\left (x^{4} + 2 \, x^{2} + 3\right )} \sqrt {-8073 i \, \sqrt {2} + 234063} \log \left ({\left (-76 i \, \sqrt {2} + 59\right )} \sqrt {-8073 i \, \sqrt {2} + 234063} + 45099 \, x\right ) + 6372 \, x}{96 \, {\left (x^{4} + 2 \, x^{2} + 3\right )}} \]

input
integrate(x^6*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="fricas")
 
output
1/96*(96*x^9 - 352*x^7 + 1024*x^5 + 1716*x^3 - 3*(x^4 + 2*x^2 + 3)*sqrt(80 
73*I*sqrt(2) + 234063)*log(sqrt(8073*I*sqrt(2) + 234063)*(76*I*sqrt(2) + 5 
9) + 45099*x) + 3*(x^4 + 2*x^2 + 3)*sqrt(8073*I*sqrt(2) + 234063)*log(sqrt 
(8073*I*sqrt(2) + 234063)*(-76*I*sqrt(2) - 59) + 45099*x) + 3*(x^4 + 2*x^2 
 + 3)*sqrt(-8073*I*sqrt(2) + 234063)*log((76*I*sqrt(2) - 59)*sqrt(-8073*I* 
sqrt(2) + 234063) + 45099*x) - 3*(x^4 + 2*x^2 + 3)*sqrt(-8073*I*sqrt(2) + 
234063)*log((-76*I*sqrt(2) + 59)*sqrt(-8073*I*sqrt(2) + 234063) + 45099*x) 
 + 6372*x)/(x^4 + 2*x^2 + 3)
 
3.2.10.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1205 vs. \(2 (199) = 398\).

Time = 0.74 (sec) , antiderivative size = 1205, normalized size of antiderivative = 5.08 \[ \int \frac {x^6 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate(x**6*(5*x**6+3*x**4+x**2+4)/(x**4+2*x**2+3)**2,x)
 
output
x**5 - 17*x**3/3 + 19*x + (-25*x**3 + 75*x)/(8*x**4 + 16*x**2 + 24) - 3*sq 
rt(26007/2048 + 15033*sqrt(3)/2048)*log(x**2 + x*(-304*sqrt(2)*sqrt(8669 + 
 5011*sqrt(3))/299 - 433349*sqrt(6)*sqrt(8669 + 5011*sqrt(3))/1498289 + 15 
2*sqrt(3)*sqrt(8669 + 5011*sqrt(3))*sqrt(43440359*sqrt(3) + 75240962)/1498 
289) - 2882918249387*sqrt(2)*sqrt(43440359*sqrt(3) + 75240962)/22448699275 
21 - 993398584*sqrt(6)*sqrt(43440359*sqrt(3) + 75240962)/1343965233 + 4993 
6376949404567/2244869927521 + 17261871038090*sqrt(3)/1343965233) + 3*sqrt( 
26007/2048 + 15033*sqrt(3)/2048)*log(x**2 + x*(-152*sqrt(3)*sqrt(8669 + 50 
11*sqrt(3))*sqrt(43440359*sqrt(3) + 75240962)/1498289 + 433349*sqrt(6)*sqr 
t(8669 + 5011*sqrt(3))/1498289 + 304*sqrt(2)*sqrt(8669 + 5011*sqrt(3))/299 
) - 2882918249387*sqrt(2)*sqrt(43440359*sqrt(3) + 75240962)/2244869927521 
- 993398584*sqrt(6)*sqrt(43440359*sqrt(3) + 75240962)/1343965233 + 4993637 
6949404567/2244869927521 + 17261871038090*sqrt(3)/1343965233) - 2*sqrt(-27 
*sqrt(2)*sqrt(43440359*sqrt(3) + 75240962)/1024 + 234063/2048 + 405891*sqr 
t(3)/2048)*atan(2996578*sqrt(3)*x/(17641*sqrt(2)*sqrt(-2*sqrt(2)*sqrt(4344 
0359*sqrt(3) + 75240962) + 8669 + 15033*sqrt(3)) + 152*sqrt(43440359*sqrt( 
3) + 75240962)*sqrt(-2*sqrt(2)*sqrt(43440359*sqrt(3) + 75240962) + 8669 + 
15033*sqrt(3))) - 1523344*sqrt(6)*sqrt(8669 + 5011*sqrt(3))/(17641*sqrt(2) 
*sqrt(-2*sqrt(2)*sqrt(43440359*sqrt(3) + 75240962) + 8669 + 15033*sqrt(3)) 
 + 152*sqrt(43440359*sqrt(3) + 75240962)*sqrt(-2*sqrt(2)*sqrt(43440359*...
 
3.2.10.7 Maxima [F]

\[ \int \frac {x^6 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=\int { \frac {{\left (5 \, x^{6} + 3 \, x^{4} + x^{2} + 4\right )} x^{6}}{{\left (x^{4} + 2 \, x^{2} + 3\right )}^{2}} \,d x } \]

input
integrate(x^6*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="maxima")
 
output
x^5 - 17/3*x^3 + 19*x - 25/8*(x^3 - 3*x)/(x^4 + 2*x^2 + 3) + 9/8*integrate 
((31*x^2 - 59)/(x^4 + 2*x^2 + 3), x)
 
3.2.10.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 576 vs. \(2 (166) = 332\).

Time = 0.63 (sec) , antiderivative size = 576, normalized size of antiderivative = 2.43 \[ \int \frac {x^6 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=x^{5} - \frac {17}{3} \, x^{3} - \frac {1}{2304} \, \sqrt {2} {\left (31 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 558 \cdot 3^{\frac {3}{4}} \sqrt {2} \sqrt {6 \, \sqrt {3} + 18} {\left (\sqrt {3} - 3\right )} - 558 \cdot 3^{\frac {3}{4}} {\left (\sqrt {3} + 3\right )} \sqrt {-6 \, \sqrt {3} + 18} + 31 \cdot 3^{\frac {3}{4}} {\left (-6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 2124 \cdot 3^{\frac {1}{4}} \sqrt {2} \sqrt {6 \, \sqrt {3} + 18} - 2124 \cdot 3^{\frac {1}{4}} \sqrt {-6 \, \sqrt {3} + 18}\right )} \arctan \left (\frac {3^{\frac {3}{4}} {\left (x + 3^{\frac {1}{4}} \sqrt {-\frac {1}{6} \, \sqrt {3} + \frac {1}{2}}\right )}}{3 \, \sqrt {\frac {1}{6} \, \sqrt {3} + \frac {1}{2}}}\right ) - \frac {1}{2304} \, \sqrt {2} {\left (31 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 558 \cdot 3^{\frac {3}{4}} \sqrt {2} \sqrt {6 \, \sqrt {3} + 18} {\left (\sqrt {3} - 3\right )} - 558 \cdot 3^{\frac {3}{4}} {\left (\sqrt {3} + 3\right )} \sqrt {-6 \, \sqrt {3} + 18} + 31 \cdot 3^{\frac {3}{4}} {\left (-6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 2124 \cdot 3^{\frac {1}{4}} \sqrt {2} \sqrt {6 \, \sqrt {3} + 18} - 2124 \cdot 3^{\frac {1}{4}} \sqrt {-6 \, \sqrt {3} + 18}\right )} \arctan \left (\frac {3^{\frac {3}{4}} {\left (x - 3^{\frac {1}{4}} \sqrt {-\frac {1}{6} \, \sqrt {3} + \frac {1}{2}}\right )}}{3 \, \sqrt {\frac {1}{6} \, \sqrt {3} + \frac {1}{2}}}\right ) - \frac {1}{4608} \, \sqrt {2} {\left (558 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (\sqrt {3} + 3\right )} \sqrt {-6 \, \sqrt {3} + 18} - 31 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (-6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 31 \cdot 3^{\frac {3}{4}} {\left (6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 558 \cdot 3^{\frac {3}{4}} \sqrt {6 \, \sqrt {3} + 18} {\left (\sqrt {3} - 3\right )} + 2124 \cdot 3^{\frac {1}{4}} \sqrt {2} \sqrt {-6 \, \sqrt {3} + 18} + 2124 \cdot 3^{\frac {1}{4}} \sqrt {6 \, \sqrt {3} + 18}\right )} \log \left (x^{2} + 2 \cdot 3^{\frac {1}{4}} x \sqrt {-\frac {1}{6} \, \sqrt {3} + \frac {1}{2}} + \sqrt {3}\right ) + \frac {1}{4608} \, \sqrt {2} {\left (558 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (\sqrt {3} + 3\right )} \sqrt {-6 \, \sqrt {3} + 18} - 31 \cdot 3^{\frac {3}{4}} \sqrt {2} {\left (-6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 31 \cdot 3^{\frac {3}{4}} {\left (6 \, \sqrt {3} + 18\right )}^{\frac {3}{2}} + 558 \cdot 3^{\frac {3}{4}} \sqrt {6 \, \sqrt {3} + 18} {\left (\sqrt {3} - 3\right )} + 2124 \cdot 3^{\frac {1}{4}} \sqrt {2} \sqrt {-6 \, \sqrt {3} + 18} + 2124 \cdot 3^{\frac {1}{4}} \sqrt {6 \, \sqrt {3} + 18}\right )} \log \left (x^{2} - 2 \cdot 3^{\frac {1}{4}} x \sqrt {-\frac {1}{6} \, \sqrt {3} + \frac {1}{2}} + \sqrt {3}\right ) + 19 \, x - \frac {25 \, {\left (x^{3} - 3 \, x\right )}}{8 \, {\left (x^{4} + 2 \, x^{2} + 3\right )}} \]

input
integrate(x^6*(5*x^6+3*x^4+x^2+4)/(x^4+2*x^2+3)^2,x, algorithm="giac")
 
output
x^5 - 17/3*x^3 - 1/2304*sqrt(2)*(31*3^(3/4)*sqrt(2)*(6*sqrt(3) + 18)^(3/2) 
 + 558*3^(3/4)*sqrt(2)*sqrt(6*sqrt(3) + 18)*(sqrt(3) - 3) - 558*3^(3/4)*(s 
qrt(3) + 3)*sqrt(-6*sqrt(3) + 18) + 31*3^(3/4)*(-6*sqrt(3) + 18)^(3/2) + 2 
124*3^(1/4)*sqrt(2)*sqrt(6*sqrt(3) + 18) - 2124*3^(1/4)*sqrt(-6*sqrt(3) + 
18))*arctan(1/3*3^(3/4)*(x + 3^(1/4)*sqrt(-1/6*sqrt(3) + 1/2))/sqrt(1/6*sq 
rt(3) + 1/2)) - 1/2304*sqrt(2)*(31*3^(3/4)*sqrt(2)*(6*sqrt(3) + 18)^(3/2) 
+ 558*3^(3/4)*sqrt(2)*sqrt(6*sqrt(3) + 18)*(sqrt(3) - 3) - 558*3^(3/4)*(sq 
rt(3) + 3)*sqrt(-6*sqrt(3) + 18) + 31*3^(3/4)*(-6*sqrt(3) + 18)^(3/2) + 21 
24*3^(1/4)*sqrt(2)*sqrt(6*sqrt(3) + 18) - 2124*3^(1/4)*sqrt(-6*sqrt(3) + 1 
8))*arctan(1/3*3^(3/4)*(x - 3^(1/4)*sqrt(-1/6*sqrt(3) + 1/2))/sqrt(1/6*sqr 
t(3) + 1/2)) - 1/4608*sqrt(2)*(558*3^(3/4)*sqrt(2)*(sqrt(3) + 3)*sqrt(-6*s 
qrt(3) + 18) - 31*3^(3/4)*sqrt(2)*(-6*sqrt(3) + 18)^(3/2) + 31*3^(3/4)*(6* 
sqrt(3) + 18)^(3/2) + 558*3^(3/4)*sqrt(6*sqrt(3) + 18)*(sqrt(3) - 3) + 212 
4*3^(1/4)*sqrt(2)*sqrt(-6*sqrt(3) + 18) + 2124*3^(1/4)*sqrt(6*sqrt(3) + 18 
))*log(x^2 + 2*3^(1/4)*x*sqrt(-1/6*sqrt(3) + 1/2) + sqrt(3)) + 1/4608*sqrt 
(2)*(558*3^(3/4)*sqrt(2)*(sqrt(3) + 3)*sqrt(-6*sqrt(3) + 18) - 31*3^(3/4)* 
sqrt(2)*(-6*sqrt(3) + 18)^(3/2) + 31*3^(3/4)*(6*sqrt(3) + 18)^(3/2) + 558* 
3^(3/4)*sqrt(6*sqrt(3) + 18)*(sqrt(3) - 3) + 2124*3^(1/4)*sqrt(2)*sqrt(-6* 
sqrt(3) + 18) + 2124*3^(1/4)*sqrt(6*sqrt(3) + 18))*log(x^2 - 2*3^(1/4)*x*s 
qrt(-1/6*sqrt(3) + 1/2) + sqrt(3)) + 19*x - 25/8*(x^3 - 3*x)/(x^4 + 2*x...
 
3.2.10.9 Mupad [B] (verification not implemented)

Time = 8.62 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.69 \[ \int \frac {x^6 \left (4+x^2+3 x^4+5 x^6\right )}{\left (3+2 x^2+x^4\right )^2} \, dx=19\,x+\frac {\frac {75\,x}{8}-\frac {25\,x^3}{8}}{x^4+2\,x^2+3}-\frac {17\,x^3}{3}+x^5-\frac {\mathrm {atan}\left (\frac {x\,\sqrt {26007-\sqrt {2}\,897{}\mathrm {i}}\,24219{}\mathrm {i}}{64\,\left (-\frac {1380483}{16}+\frac {\sqrt {2}\,4286763{}\mathrm {i}}{128}\right )}-\frac {24219\,\sqrt {2}\,x\,\sqrt {26007-\sqrt {2}\,897{}\mathrm {i}}}{128\,\left (-\frac {1380483}{16}+\frac {\sqrt {2}\,4286763{}\mathrm {i}}{128}\right )}\right )\,\sqrt {26007-\sqrt {2}\,897{}\mathrm {i}}\,3{}\mathrm {i}}{16}+\frac {\mathrm {atan}\left (\frac {x\,\sqrt {26007+\sqrt {2}\,897{}\mathrm {i}}\,24219{}\mathrm {i}}{64\,\left (\frac {1380483}{16}+\frac {\sqrt {2}\,4286763{}\mathrm {i}}{128}\right )}+\frac {24219\,\sqrt {2}\,x\,\sqrt {26007+\sqrt {2}\,897{}\mathrm {i}}}{128\,\left (\frac {1380483}{16}+\frac {\sqrt {2}\,4286763{}\mathrm {i}}{128}\right )}\right )\,\sqrt {26007+\sqrt {2}\,897{}\mathrm {i}}\,3{}\mathrm {i}}{16} \]

input
int((x^6*(x^2 + 3*x^4 + 5*x^6 + 4))/(2*x^2 + x^4 + 3)^2,x)
 
output
19*x + ((75*x)/8 - (25*x^3)/8)/(2*x^2 + x^4 + 3) - (atan((x*(26007 - 2^(1/ 
2)*897i)^(1/2)*24219i)/(64*((2^(1/2)*4286763i)/128 - 1380483/16)) - (24219 
*2^(1/2)*x*(26007 - 2^(1/2)*897i)^(1/2))/(128*((2^(1/2)*4286763i)/128 - 13 
80483/16)))*(26007 - 2^(1/2)*897i)^(1/2)*3i)/16 + (atan((x*(2^(1/2)*897i + 
 26007)^(1/2)*24219i)/(64*((2^(1/2)*4286763i)/128 + 1380483/16)) + (24219* 
2^(1/2)*x*(2^(1/2)*897i + 26007)^(1/2))/(128*((2^(1/2)*4286763i)/128 + 138 
0483/16)))*(2^(1/2)*897i + 26007)^(1/2)*3i)/16 - (17*x^3)/3 + x^5